片斷: CHAPTER1 GeometryinRegionsofaSpace. BasicConcepts ?Co-ordinateSystems Webeginbydiscussingsomeoftheconceptsfundamentaltogeometry.In schoolgeometry-theso-called"elementaryEuclidean"geometryofthe ancientGreeks-themainobjectsofstudyarevariousmetricalproperties ofthesimplestgeometricalfigures.Thebasicgoalofthatgeometryisto findrelationshipsbetweenlengthsandanglesintrianglesandotherpolygons. Knowledgeofsuchrelationshipsthenprovidesabasisforthecalculation ofthesurfaceareasandvolumesofcertainsolids.Thecentralconcepts underlyingschoolgeometryarethefollowing:thelenethofastraightline segment(orofacirculararc);andtheanglebetweentwointersectingstraight lines(orcirculararcs). Thechiefaimofanalytic(orco-ordinate)geometryistodescribegeo- metricalfiguresbymeansofalgebraicformulaereferredtoaCartesian systemofco-ordinatesoftheplaneor3-dimensionalspace.Theobjects studiedarethesameasinelementaryEuclideangeometry:thesoledifference liesinthemethodology.Again,differentialgeometryisthesameoldsubject, exceptthatherethesubtlertechniquesofthedifferentialcalculusandlinear algebraarebroughtintofullplay.Beingapplicabletogeneral"smooth" geometricalobjects,thesetechniquesprovideaccesstoawiderclassofsuch objects. 1.1.CartesianCo-ordinatesinaSpace Ourmostbasicconceptionofgeometryissetoutinthefollowingtwopara- graphs: (i)WedoourgeometryinacertainspaceconsistingofpointsP,Q,.... (ii)Asinanalyticgeometry,weintroduceasystemofco-ordinatesforthe space.Thisisdonebysimplyassociatingwitheachpointofthespace anorderedn-tuple(x,...,x)ofrealnumbers-theco-ordinatesofthe point-insuchawayastosatisfythefollowingtwoconditions: (a)Distinctpointsareassigneddistinctn-tuples.Inotherwords,points PandQwithco-ordinates(xl....,x)and(y,...,y)areoneand thesamepointifandonlyifx'=y,i=1,...,n. (b)Everypossibien-tuple(x....,x)isused,i.e.isassignedtosome pointofthespace. 1.1.1.Definition.AspacefurnishedwithasystemofCartesianco-ordinates satisfyingconditions(a)and(b)iscalledann-dimensionalCartesianspace. andisdenotedbyR".Theintegerniscalledthedimensionofthespace. Weshalloftenrefersomewhatlooselytothen-tuples(x,....x)them- selvesasthepointsofthespace.ThesimplestexampleofaCartesianspace istherealnumberline.Hereeachpointhasjustoneco-ordinatex,sothat n=1,i.e.itisal-dimensionalCartesianspace.Otherexamples,familiar fromanalyticgeometry,areprovidedbyCartesianco-ordinatizationsof theplane(whichisthena2-dimensionalCartesianspace).andofordinary (i.e.3-dimensional)space(Figure1).TheseCartesianspacesarecompletely adequateforsolvingtheproblemsofschoolgeometry.
|